Firewall Configuration Errors Revisited

Avishai Wool
CTO & Co-Founder, AlgoSec
and
Prof., Tel Aviv University

Agenda

- Introduction
- Data sources and procedures
- Configuration errors
- Highlights of 2004 study
- Results and discussion
Firewalls seem to be badly configured:

- 45% of companies worldwide suffered attacks from viruses and worms in the last 12 months
 - (this is a made up statistic, true in every year …)
- A properly configured firewall could easily block attacks such as:
 - Sasser worm: attacked port 445 (Netbios)
 - Saphire SQL worm: attacked port 1431
 - Blaster worm: attacked ports 135/137 (Netbios)
- Firewall configs are deemed sensitive – why?
 - Admins know they have holes…
 - Security by obscurity?

Can we quantify the problem?

1. Need firewall configuration data
 - Not available publicly
2. Need to understand the configurations
 - Complex vendor-dependent configuration languages
3. What is an error?
 - Subjective, organization-dependent
#1 : We have the data

- AlgoSec performed firewall analysis for hundreds of customers since 2000
- Data is under non-disclosure agreements – but we can publish statistics

#2 : We have the technology

- Firewall Analyzer software can parse configuration languages
 - (Check Point, Cisco PIX, Cisco Router Access-lists)
#3 : What is an error?

- Idea: only count “obvious” errors

- Rely on “best practices”:
 - SANS Top 20
 - CERT
 - PCI DSS (Payment Card Industry)
 - NIST 800-41
 - …

Plan of action

First study (2004):
- Check Point Firewall-1 configurations
- Select 12 severe errors
- Analyze available configurations
- Count number of errors
- Statistical analysis to identify causes and trends

Current study:
- Both Check Point and Cisco PIX
- Larger - 2x number of configurations
- More in-depth: 36 severe errors,
- Check whether 2004 findings are still valid
Timeline of data collection

- Configuration files were collected between 2000-2005

- Check Point Firewall-1 versions:
 - 3.0, 4.0 – “end-of-life”
 - 4.1 – was still supported
 - NG – released in 2001, minor versions FP3, R54, R55

- Cisco PIX
 - PIX versions 4.x, 5.x, 6.x, 7.0

Highlights of the 2004 study
Firewall-1 version helps

On average, 2 risks less
Why did the version matter?

- Some risks are the result of Check Point “implicit rules”
- Changed default values in v4.1
- New policy wizard to create a reasonable initial configuration

How to measure complexity

- Complexity =

 \#Rules +

 \#Network Objects +

 (#interfaces choose 2)

- 2 interfaces \(\rightarrow\) 1 data path
- 3 interfaces \(\rightarrow\) 3 data paths
- 4 interfaces \(\rightarrow\) 6 data paths, etc
Small is Beautiful

Current Results
Why should anything change?

- Regulation and Compliance:
 - Sarbanes-Oxley
 - Payment Card Industry (PCI DSS)
 - NIST 800-41
- …
- Different vendors – different issues?
- New software versions – continue the trend?

Differences from 2004 report

- Both Check Point and PIX
- 2x configurations tested
- Newer software versions
- Vendor-neutral risk items
 - 8 of 12 properties in 2004 study were specific to Check Point

→ Pick a new set of 36 risk items
→ Inbound / Outbound / Internal traffic
Firewalls still badly configured

Version does not matter … (Check Point)
Vendor-neutral risks are controlled by **basic filtering** functionality

Basic filtering controlled by **explicit user-defined rules**, rather than “check boxes” with vendor "know-how" (??)

Neither vendor has changed the basic filtering capabilities in years (and it’s unlikely that they will)
How to measure complexity of a PIX?

- Check Point:
 - Single rule-base
 - Separate object database

- Cisco PIX:
 - Separate rule-base per interface
 - No object database (almost)

- Old RC metric not very suitable for PIX!

Issues with old RC metric (even on Check Point)

- Not enough weight to #interfaces:
 - #rules: 100s – 1000s
 - #objects 1000s
 - #interfaces 2-20 – dwarfed (even quadratically)

- Example:
 - A firewall with 12 interfaces should be much more complex than with 3 …
 - RC contribution by interfaces is only 66
A New Firewall Complexity Measure

- Idea: pretend to “compile” Check Point configuration into a PIX configuration
 - Duplicate the rule-base, once per interface
 - Add the object database once
 - Count the resulting “number of lines”
 - Compare with PIX config “number of lines” (minus some PIX boilerplate)

Check Point: \[FC = (\#\text{rules} \times \#\text{interfaces}) + \#\text{objects} \]
PIX: \[FC = \#\text{lines} - 50 \]

Complexity distributions

The range of complexity is comparable
Small is Still Beautiful

Check Point vs PIX
Questions?

- E-mail:
 - yash@eng.tau.ac.il
 - avishai.wool@algosec.com
 - http://www.algosec.com

- 2004 study: